Elasticsearch之join关联查询

袁志蒙 1030次浏览

摘要:在Elasticsearch这样的分布式系统中执行类似SQL的join连接是代价是非常大的。然而,Elasticsearch却给我们提供了基于水平扩展的两种连接形式。一、join总述1、关系类比在关系...

在Elasticsearch这样的分布式系统中执行类似SQL的join连接是代价是非常大的。然而,Elasticsearch却给我们提供了基于水平扩展的两种连接形式。

一、join总述

1、关系类比

在关系型数据库中,以MySQL为例,我们经常用到join关键字对有关系的两张或者多张表进行关联查询。但是当数据量达到一定量级时,查询性能就是经常困扰的问题。

由于es可以做到数亿量级的秒查(具体由分片数量决定),这时候把数据同步到es是我们可以使用解决方案之一。

那么不禁有疑问问了,由于业务场景的决定,之前必须关联查询的两张表还能做到进行关联吗?

答案是可以的,es也提供了类似于关系型数据库的关联查询,但是它又与关系型数据的关联查询有明显的区别与限制。


2、使用限制

由于es属于分布式文档型数据库,数据自然是存在于多个分片之上的。Join字段自然不能像关系型数据库中的join使用。在es中为了保证良好的查询性能,最佳的实践是将数据模型设置为非规范化文档,通过字段冗余构造宽表,即存储在一个索引中。


(1)父子文档(数据)必须存储在同一index中

(2)父子文档(数据)必须存储在同一个分片中

(3)一个index中只能包含一个join字段,但是可以有多个关系

(4)同一个index中,一个父关系可以对应多个子关系,一个子关系只对应一个父关系


3、性能问题

当然执行了join查询固然性能会受到一定程度的影响。对于带 has_child / has_parent 而言,其查询性能会随着指向唯一父文档的匹配子文档的数量增加而降低。开篇第一句摘自es官网描述,从ES官方的描述来看join关联查询对性能的损耗是极大的

不过,在笔者使用的过程中,在6个分片的前提下,且子表数据量在千万量级的情况下,关联查询的耗时还是在秒内的,许多场景还是可以接受的。

建议我们在使用前,根据分片的多少和预估未来数据量的大小提前做好性能测试,防止以后数量达到一定程度时,性能有明显下降,那个时候再改存储方案得不偿失。

二、Mapping

1、举例说明

这里以优惠券活动与优惠券明细为例,在一个优惠券活动中可以发放几千万的优惠券,所以券活动与券明细是一对多的关系。

券活动表字段:

字段 说明

activity_id 活动ID

activity_name 活动名称


券明细表字段:

字段 说明

coupon_id 券ID

coupon_amount 券面额

activity_id 外键-活动ID


2、mapping释义

join类型的字段主要用来在同一个索引中构建父子关联关系。通过relations定义一组父子关系,每个关系都包含一个父级关系名称和一个或多个子级关系名称activity_coupon_field是一个关联字段,内部定义了一组join关系,该字段为自命名,type指定关联关系是join,固定写法,relations定义父子关系,activity父类型名称,coupon子类型名称,名称均为自命名。

{
	"mappings": {
		"properties": {
			"activity_coupon_field": {
				"type": "join",
				"relations": {
					"activity": "coupon"
				}
			},
			"activity_id": {
				"type": "keyword"
			},
			"activity_name": {
				"type": "keyword"
			},
			"coupon_id": {
				"type": "long"
			},
			"coupon_amount": {
				"type": "long"
			}
		}
	}
}

三、插入数据

1、插入父文档

在put父文档数据的时候,我们通常按照某种规则指定文档ID,方便子文档数据变更时易于得到父文档ID。比如这里我们用activity_id的值:activity_100来作为父id

PUT /coupon/_doc/activity_100
 
{
	"activity_id": 100,
	"activity_name": "年货节5元促销优惠券",
	"activity_coupon_field": {
		"name": "activity"
	}
}

2、插入子文档

上边已经指定了父文档ID,而子表中已经包含有activity_id,所以很容易得到父文档ID。

put子文档数据时候,必须指定父文档ID,就是父文档中的_id,这样父子数据才建立了关联关系。与此同时还要指定routing字段为父文档ID,这样保证了父子数据在同一分片上。

PUT /coupon/_doc/coupon_711235?routing=activity_id_100
 
{
	"coupon_id": 711235,
	"coupon_amount": "5",
	"activity_id": 100,
	"activity_coupon_field": {
		"name": "coupon",
		"parent": "activity_id_100" //父ID
	}
}

四、关联查询

1、has_parent查询(父查子)

根据父文档条件字段查询符合条件的子文档数据

例如:查询包含“年货节”活动字样,且已经被领取过的券

{
	"query": {
		"bool": {
			"must": [{
				"parent_type": "activity",
				"has_parent": {
					"query": {
						"bool": {
							"must": [{
								"term": {
									"status": {
										"value": 1
									}
								}
							}, {
								"wildcard": {
									"activity_name": {
										"wildcard": "*年货节*"
									}
								}
							}]
						}
					}
				}
			}]
		}
	}
}

2、has_child查询(子查父)

根据子文档条件字段符合条件的父文档数据

例如:查询coupon_id=711235在那个存在于哪个券活动中

{
	"query": {
		"bool": {
			"must": [{
				"has_child": {
					"type": "coupon",
					"query": {
						"bool": {
							"must": [{
								"term": {
									"coupon_id": {
										"value": 711235
									}
								}
							}]
						}
					}
				}
			}]
		}
	}
}


随机内容

表情

共0条评论
  • 这篇文章还没有收到评论,赶紧来抢沙发吧~